9. Newton's Laws of Dynamics

9.1. Galileo discovered the principle of inertia: objects have a 'reluctance' to change their state of motion.

- Newton's laws quantify and expand on the above.
 - The first law is a restatement of Galileo's principle
 - The second law describes how the velocity changes as a result of forces
 - The third law describes a characteristic of forces

Mathematically, the second law states that

\[F = \frac{d}{dt}(mv) = m \frac{dv}{dt} = ma \]

- Mass is assumed to be constant
- \(v \) is a vector quantity

This also applies to circular motion. In 7.4, we showed that the vertical distance an object 'falls' while undergoing circular motion is found by

\[
S = \frac{x^2 - (vt)^2}{2R} = \frac{1}{2} \left(\frac{v^2}{R} \right) t^2.
\]

For \(u = 0 \), this is equivalent to one of the satellite equations with \(a = \frac{v^2}{R} \).

9.2. Splitting motion into components

- We can completely specify the magnitude and direction of an action by considering the \(x, y, z \) components.
 - E.g. for velocity:
 \[
 v_x = \frac{dx}{dt}, \quad v_y = \frac{dy}{dt}, \quad v_z = \frac{dz}{dt}
 \]
 the speed is then \(|v| = \sqrt{v_x^2 + v_y^2 + v_z^2} \).

9.3. We can do the same thing with forces:

\(F_x = ma_x = F \cos(x, \theta) \) where \(F = \sqrt{F_x^2 + F_y^2 + F_z^2} \)

\(F_y = ma_y = F \cos(y, \theta) \) and \((x, \theta) \) is the angle between \(x \) and \(F \).
9.4 Laws for forces

- Newton discovered that \(F = \frac{GMm}{r^2} = mg \), where \(g \) is the acceleration of gravity.
- By \(\text{N}2 \), we have \(mg = ma \), so \(g = a \).
- Then, \(\dot{v}_z = v_0 + gt \Rightarrow z = z_0 + v_0 t + \frac{1}{2} gt^2 \).

- A spring obeys the equation \(F = -kx \).
- By \(\text{N}2 \), we have \(-kx = m \frac{dv_x}{dt} \).
- Choosing suitable units: \(\frac{dv_x}{dt} = -cx \).

9.5 The time-evolution of a system

- At time \(t \), an object may have position \(x \) and velocity \(v \).
- We then want to know what happens at \(t + \varepsilon \).
- For small \(\varepsilon \), we can say
 \[x(t + \varepsilon) = x(t) + \varepsilon v(t). \]

- Likewise:
 \[v(t + \varepsilon) = v(t) + \varepsilon a(t). \]
- The dynamics (not kinematics) of the system allow for \(u \) to proceed. For example, in the case of a spring, we substitute \(a(t) = -cx(t) \).

To summarise:
- initial \(v \) and \(x \) \(\rightarrow \) new \(x \) \(\rightarrow \) new \(a \)...
- initial acceleration \(\downarrow \)
- new \(v \) \(\uparrow \)
9.6 The numerical solution for the spring system

Let \(x(0) = 1 \), \(v(0) = 0 \), \(\varepsilon = 0.1 \)

\[
\begin{align*}
x(0.1) &= x(0) + 0.1v(0) = 1 \\
v(0.1) &= v(0) + 0.1a(0) = v(0) - 0.1x(0) = -0.1
\end{align*}
\]

THEN \(x(0.2) = x(0.1) + 0.1v(0.1) = 0.99 \)

\(v(0.2) = v(0.1) - 0.1x(0.1) = -0.2 \)

and so on.

Above, we used the velocity value at the lower boundary \([e.g.\ v(0)]\), but we can improve by using the midpoints.

\[
\begin{align*}
x(t + \varepsilon) &= x(t) + \varepsilon v(t + \frac{\varepsilon}{2}) \\
v(t + \frac{\varepsilon}{2}) &= v(t - \frac{\varepsilon}{2}) + \varepsilon a(t) \\
a(t) &= -\varepsilon c(t)
\end{align*}
\]

However, note that we will need a special equation to start the \(v \)-values off:

\[
v(\frac{\varepsilon}{2}) = v(0) + \frac{\varepsilon}{2} a(0).
\]

We can now fill up a table and plot a graph of motion.

9.7 Planetary motion

We set up a coordinate system, with the sun (stationary) at \((0, 0)\) and the planet at \((x, y)\). We then split the gravitational force into \(F_x \) and \(F_y \)

Because of similar triangles,

\[
F_x = -\frac{x}{r} \Rightarrow F_x = -\frac{F}{r}
\]

\[
F_x = -\frac{GMm_x}{r^3}
\]

(same can be done for \(F_y \))
Then, with the right units, we have:
\[a_x = -\frac{x}{r^3} \]
\[a_y = -\frac{y}{r^3} \]
\[r = \sqrt{x^2 + y^2} \]

Choosing initial values:
\[x(0) = 0.5 \quad y(0) = 0 \quad \varepsilon = 0.1 \]
\[v_x(0) = 0 \quad v_y(0) = 1.63 \]

\[\Rightarrow \quad r(0) = 0.5 \]
\[a_x(0) = -4 \quad a_y(0) = 0 \]
\[\text{then} \quad v_x(0.05) = v_x(0) + 0.05a_x(0) = 0 - 4 \times 0.05 = -0.2 \]
\[v_y(0.05) = v_y(0) + 0.05a_y(0) = 1.63 + 0 \times 0.05 = 1.63 \]

\[\Rightarrow \text{calculate } x(0.1) \text{ and } y(0.1) \Rightarrow \text{calculate } r \Rightarrow \text{calculate } a(0.1) \]

Repeating this process gives an elliptical shape.

We can extend this to include perturbations. If we are planet \(i \), and there are \(N \) other planets:
\[m_i a_i x = \sum_{j=1}^{N} \frac{-Gm_i m_j (x - x_j)}{r_{ij}^3} \]

and likewise for \(a_i y \) and \(a_i z \).